Organic Optoelectronic Materials and Devices 有机光电材料与器件(叶常青)(英文版)
定 价:68 元
- 作者:叶常青、李琳、梁作芹 等 编著
- 出版时间:2024/9/1
- ISBN:9787122455789
- 出 版 社:化学工业出版社
- 中图法分类:TN204
- 页码:213
- 纸张:
- 版次:01
- 开本:16开
本书为英文版教材,系统介绍了有机光电材料与器件的基本概念、原理及应用。全书共分10章,首先概述了分子吸收光谱、荧光与磷光相关基础知识以及变色材料与器件的分子变色机理、基本概念及应用。之后按照材料功能特点重点阐述了有机发光二极管(OLED)、液晶(LC)、有机场效应晶体管(OEFT)、有机太阳能电池(OSC)、有机光导体(OPC)、双光子吸收等类型材料与器件所涉及的基本概念、器件结构与工作原理、材料分子设计及应用领域。
本书可作为材料化学,特别是功能材料专业高年级本科生和研究生双语教材。
叶常青,苏州科技大学,功能材料系副主任、副教授,中国光学功能膜材料标准化技术委员会委员、中国印刷技术协会标签与特种印刷分会委员、全国印刷电子与智能包装产业联合体顾问专家委员会委员和《信息记录材料》杂志编委。现为江苏省333工程中青年科学技术带头人、江苏省第十四批“六大人才高峰”;江苏高校青蓝工程优秀青年骨干教师;苏州市高等院校、科研院所紧缺高层次人才;苏州科技大学2017年高端人才培育计划——“拔尖人才成长计划”。获得共青团苏州市委“奋进十三五、青春建新功——苏州好青年”称号、中科院青年科学奖、卢嘉锡科学教育基金会优秀研究奖、苏州科技大学“五四青年”奖章、苏州科技大学优秀教师、苏州科技大学“先进个人”等荣誉奖励。
围绕“微纳有机光电材料与器件”科研方向,主持国家、省部级项目10余项,包括国家自然科学基金面上项目、江苏省优秀青年基金等。在EnergyEnviron.Sci.,J.Am.Chem.Soc.;Macromolecules等SCI杂志发表论文60余篇,12篇被选为封面。获中国真空学会优秀博士论文奖(2012);苏州市自然科学优秀学术论文二等奖;主要参与人获中国石油化工行业协会技术发明三等奖。
同时积极投身科研成果应用转换,已授权发明专利22项,申请PCT专利2项。两项功能涂层技术成果转化获江苏省科技厅高新技术产品认定。先后与德国奥迪公司、华为、九阳、苏州市药监局、苏州市疾控中心等单位开展应用合作。开发光子晶体增强长余辉应急涂层材料,已应用在“湖南省人防办人防物资库项目”、“江苏省靖江市人防指挥所”等民生4工程项目。
教研教改工作方面,主持“有机光电材料与器件”专业课,入选江苏省级优秀研究生课程,苏州科技大学“yi流课程”和“精品视频课程”等校级教改项目建设,指导学生获2013年江苏省普通高校本科优秀毕业论文二等奖;指导团队连续获得2016、2017年“江苏省普通高校本科优秀毕业论文团队”奖;获苏州科技大学教学成果二等奖(排名1),以排名2获苏州科技大学教学成果特等奖一项、二等奖两项。获苏州市教学成果奖(高等教育类)特等奖(排名2)。同时积极指导大学生双创活动,2017年获江苏省大学生科技创新成果展铜奖。指导学生连续获得2014、2016年“创青春”大学生创业大赛江苏省金奖,及国家银奖、铜奖,获创青春江苏省优秀指导教师。
Chapter 1 Molecular UV-Vis Absorption Spectrum 1
1.1 Basic Properties of Light 1
1.2 Electron Transition 2
1.2.1 Ground State and Excited State 2
1.2.2 Electron Transition Type 4
1.2.3 Transition Allowed and Transition Forbidden 4
1.3 UV-Vis Absorption Spectrum 6
1.3.1 Absorption Rule 6
1.3.2 Lamber-Beer’s Law 6
1.3.3 UV-Vis Absorption Spectrum 7
1.3.4 UV-Vis Absorption Spectrometer 8
1.4 Factors of Influence on the UV-Vis Absorption Spectrum 8
1.4.1 Basic Concepts 8
1.4.2 Conjugation Effect 11
1.4.3 Steric Effect 13
1.4.4 Solvent Effect 14
1.4.5 Substituent Effect 17
1.4.6 Concentration Effect 18
1.4.7 Absorption Spectrum of Molecular Aggregates 19
1.5 Molecular Structure and Color 20
Chapter 2 Fluorescence Spectra and Fluorescent Sensors 24
2.1 Luminescence 24
2.1.1 Excited State and Decay 24
2.1.2 Singlet State and Triplet State 25
2.1.3 Excited State Decay 25
2.1.4 Fluorescence and Phosphorescence 26
2.1.5 Internal Conversion and Intersystem Crossing 27
2.1.6 Jablonski Diagram 27
2.2 Fluorescence Spectra 28
2.2.1 Fluorescence Emission Spectra 28
2.2.2 Fluorescence Spectrum Characteristics 29
2.2.3 Fluorescence Properties 31
2.3 Factors Influencing Fluorescence Properties 33
2.3.1 Conjugation Effect 33
2.3.2 Planar Effect 34
2.3.3 Substituent Effect 35
2.3.4 Solvent Effect 36
2.3.5 Concentration Effect 39
2.3.6 Other Factors 41
2.4 Phosphorescence Emission 43
2.5 Radiative Energy Transfer and Non-radiative Energy Transfer 44
2.5.1 Radiative Energy Transfer 45
2.5.2 Non-radiative Energy Transfer 48
2.5.3 Stern-Volmer Quenching Equation 49
2.6 Fluorescence Chemical Sensor 51
2.6.1 Structure of Fluorescent Sensing Molecule 51
2.6.2 Signal Expression of Fluorescence Sensor 52
2.6.3 Examples of Fluorescent Sensors 55
Chapter 3 Photochromic and Electrochromic Materials 58
3.1 Photochromism 58
3.1.1 Chromic Materials 58
3.1.2 Photochromism 58
3.1.3 Photochromism Mechanism 58
3.2 Photochromic Materials 59
3.2.1 Azo Derivatives 59
3.2.2 Salicylideneanilines (Schiff’s Base) 62
3.2.3 Diarylethenes 63
3.2.4 Spiropyrans 65
3.3 Photochromic Materials Applications 65
3.3.1 Optical Switches 65
3.3.2 Optical Information Storage 66
3.4 Electrochromic Materials 67
3.4.1 Viologens 68
3.4.2 Polyanilines 69
3.4.3 Metal Phthalocyanines (Phthalocyanine Complexes) 71
3.4.4 Polypyridyl Metal Complexes 74
3.4.5 Electrochromic Parameters 77
3.4.6 Electrochromic Devices 80
3.4.7 Electrochromic Device Applications 82
Chapter 4 Organic Light-emitting Diodes 84
4.1 OLED Research Development 84
4.2 OLEDs Structures 85
4.2.1 Single-layer OLED 86
4.2.2 Multi-layer OLED 87
4.3 OLEDs Product Categories 87
4.4 OLEDs Working Principles 88
4.5 OLEDs Performance Parameters 90
4.6 OLED Materials 93
4.6.1 Organic Luminescent Materials 94
4.6.2 Carrier Transport Materials 97
4.6.3 Electrode Materials of OLEDs 98
4.7 Key Factors on OLED Performances 99
4.7.1 Energy Level Matching 99
4.7.2 Mobility Matching 103
4.8 OLED Production Process 104
Chapter 5 Liquid Crystal Display Materials and Technology 107
5.1 Introduction 107
5.2 Liquid Crystals Classification 108
5.3 Liquid Crystals Chemical Structures 109
5.4 Liquid Crystal Phases 111
5.4.1 Nematic Liquid Crystals 111
5.4.2 Cholesteric Liquid Crystals 111
5.4.3 Smectic Liquid Crystals 112
5.5 Liquid Crystal Domains 112
5.6 Physical Properties 113
5.6.1 LC Temperature Range 114
5.6.2 Viscosity 115
5.6.3 Dielectric Constant 116
5.6.4 Refractive Index 118
5.7 Liquid Crystal Displays 119
5.7.1 Basic Components 119
5.7.2 Working Principle 120
Chapter 6 Organic Field-Effect Transistor Materials and Devices 122
6.1 Field-Effect Transistors 122
6.1.1 Basic Conceptions 122
6.1.2 p-n Junction Semiconductor Diode 124
6.1.3 Semiconductor Triode 125
6.2 Organic Field Effect Transistor 126
6.2.1 OFET Device Structure 126
6.2.2 OFET Working Principle 127
6.3 OFET Performances 128
6.3.1 Device Mobility 128
6.3.2 On/Off Ratio 129
6.3.3 Threshold Voltage 130
6.3.4 Saturation and Unsaturation Regions 130
6.4 OFET Materials 131
6.4.1 Organic Semiconductor Materials 131
6.4.2 Electrode Materials 134
6.4.3 Insulating Layer Materials 136
6.4.4 Substrate Materials 136
6.5 OFET Fabrication Processes 137
6.5.1 Silk-screen Printing 137
6.5.2 Inkjet Printing 138
Chapter 7 Organic Solar Energy Materials and Devices 140
7.1 Solar Spectrum and Solar Energy Utilization 140
7.1.1 Solar Spectrum 140
7.1.2 Solar Energy Utilization 141
7.2 Organic Solar Cell 141
7.2.1 Working Principle 142
7.2.2 Performance Parameters 142
7.2.3 OSC Structures 144
7.2.4 Organic Solar Active Materials 147
7.3 Dye Sensitized Solar Cell (DSSC) 149
7.3.1 Dye Sensitization Principle 149
7.3.2 DSSC Device Structure 150
7.3.3 DSSC Working Principle 151
7.3.4 DSSC Materials 152
7.3.5 Factors influencing DSSCs Performances 155
7.4 Conversion from Solar Energy to Chemical Energy 156
7.4.1 Photosynthesis 156
7.4.2 Conversion of Solar Energy to Hydrogen Energy 158
7.5 Conversion of Solar Energy to Heat 160
Chapter 8 Organic Photoconductors and Devices 162
8.1 Organic Photoconductor Principle 162
8.2 OPC Performance Parameters 163
8.3 OPC Materials 165
8.3.1 Phthalocyanine and Metalphthalocyanine 165
8.3.2 Polyvinylcarbazole 167
8.3.3 PVC Composites 168
8.3.4 Squaraine Dye 170
8.4 OPC Devices 171
8.4.1 OPC Device Composition 171
8.4.2 OPC Device Structure 171
8.4.3 OPC Device Working Principle 172
8.4.4 OPC Device Parameters 172
Chapter 9 Two-photon Absorption Materials and Applications 174
9.1 Two-photon Absorption 174
9.1.1 Nonlinear Optical Phenomena 174
9.1.2 Two-photon Absorption 175
9.2 Two-photon Absorption Applications 175
9.2.1 Optical Power Limiting 176
9.2.2 Two-photon Upconversion Lasing 178
9.2.3 Two-photon Data Storage 180
9.2.4 Two-photon Photodynamic Therapy 182
9.2.5 Two-photon Cofocal Laser Scanning Microscopy (CLSM) 183
9.3 Strong Two-photon Absorption Chromophores 184
9.3.1 Theoretical Molecular Designs 184
9.3.2 Asymmetric Molecular Structures 186
9.3.3 Symmetric Molecular Structures 189
References 192
Chapter 10 Triplet-triplet Annihilation Upconversion Materials and Applications 193
10.1 Triplet-triplet Annihilation Upconversion 193
10.1.1 Differences between TTA-UC and TPA-UC 194
10.1.2 TTA-UC Efficiency 195
10.2 Potential Applications of TTA-UC 198
10.2.1 Upconversion-powered Photoelectrochemistry 198
10.2.2 Upconversion-powered Solar Cell 200
10.2.3 TTA-UC-powered Photolysis of Bilirubin 202
10.3 Triplet-triplet Annihilation Upconversion Systems 203
10.3.1 Solution-based Upconversion Systems 203
10.3.2 Polymer-based Upconversion Systems 208
References 212