《Springer手册精选系列·晶体生长手册(第5册):晶体生长模型及缺陷表征(影印版)》介绍了生长工艺和缺陷形成的模型。这些章节验证了工艺参数和产生晶体质量问题包括缺陷形成的直接相互作用关系。随后的PartG展示了结晶材料特性和分析的发展。PartF和G说明了预测工具和分析技术在帮助高质量的大尺寸晶体生长工艺的设计和控制方面是非常好用的。
Govindhan Dhanaraj is the Manager of Crystal Growth
Technologies at Advanced Renewable Energy Company (ARC Energy) at
Nashua, New Hampshire (USA) focusing on the growth of large size
sapphire crystals for LED lighting applications, characterization
and related crystal growth furnace development. He received his PhD
from the Indian Institute of Science, Bangalore and his Master of
Science from Anna University (India). Immediately after his
doctoral degree, Dr. Dhanaraj joined a National Laboratory,
presently known as Rajaramanna Center for Advanced Technology in
India, where he established an advanced Crystal Growth Laboratory
for the growth of optical and laser crystals. Prior to joining ARC
Energy, Dr. Dhanaraj served as a Research Professor at the
Department of Materials Science and Engineering, Stony Brook
University, NY, and also held a position of Research Assistant
Professor at Hampton University, VA. During his 25 years of focused
expertise in crystal growth research, he has developed optical,
laser and semiconductor bulk crystals and SiC epitaxial films using
solution, flux, Czochralski, Bridgeman, gel and vapor methods, and
characterized them using x-ray topography, synchrotron topography,
chemical etching and optical and atomic force microscopic
techniques. He co-organized a symposium on Industrial Crystal
Growth under the 17th American Conference on Crystal Growth and
Epitaxy in conjunction with the 14th US Biennial Workshop on
Organometallic Vapor Phase Epitaxy held at Lake Geneva, WIin 2009.
Dr. Dhanaraj has delivered invited lectures and also served as
session chairman in many crystal growth and materials science
meetings. He has published over 100 papers and his research
articles have attracted over 250 rich citations.
缩略语
PartF 晶体生长及缺陷模型
36 熔体生长晶体体材料的传导和控制
36.1 运输过程的物理定律
36.2 熔体的流动结构
36.3 外力对流动的控制
36.4 前景
参考文献
37 Ⅲ族氮化物的气相生长
37.1 Ⅲ族氮化物的气相生长概述
37.2 AIN/GaN气相淀积的数学模型
37.3 气相淀积AIN/GaN的表征
37.4 GaN的IVPE生长模型——个案研究
37.5 气相GaN/AIN膜生长的表面形成
37.6 结语
参考文献
38 生长直拉硅晶体中连续尺寸量子缺陷动力学
38.1 微缺陷的发现
38.2 无杂质时的缺陷动力学
38.3 有氧时的直拉缺陷动力学
38.4 有氮时的直拉缺陷动力学
38.5 直拉硅单晶中空位的横向合并
38.6 结论
参考文献
39 熔体基底化合物晶体生长中应力和位错产生的模型
39.1 综述
39.2 晶体生长过程
39.3 半导体材料的位错分布
39.4 位错产生的模型
39.5 晶体的金刚石结构
39.6 半导体的变形特性
39.7 Haasen模型对晶体生长的应用
39.8 替代模式
39.9 模型概述和数值实现
39.1 0数值结果
39.1 1总结
参考文献
40 BS和EFG系统中的质量和热量传输
40.1 杂质分布的基预测模型——垂直BS系统
40.2 杂质分布的基预测模型-EFG系统
参考文献
PartG 缺陷表征及技术
41晶体层结构的X射线衍射表征
41.1 X射线衍射
41.2 层结构的基本直接X射线衍射分析
41.3 设备和理论思考
41.4 从低到高的复杂性分析实例
41.5 快速分析
41.6 薄膜微映射
41.7 展望
参考文献
42 晶体缺陷表征的X射线形貌技术
42.1 X射线形貌的基本原则
42.2 X射线形貌技术的发展历史
42.3 X射线形貌技术和几何学
42.4 X射线形貌技术理论背景
42.5 X射线形貌上缺陷的对比原理
42.6 X射线形貌上的缺陷分析
42.7 目前的应用状况和发展
参考文献
……
43 半导体的缺陷选择性刻蚀
44 晶体的透射电子显微镜表征
45 点缺陷的电子自旋共振表征
46 半导体缺陷特性的正电子湮没光谱表征