《Springer手册精选系列·晶体生长手册(第2册):熔体法晶体生长技术(影印版)》介绍体材料晶体的熔体生长,一种生长大尺寸晶体的关键方法。这一部分阐述了直拉单晶工艺、泡生法、布里兹曼法、浮区熔融等工艺,以及这些方法的*进展,例如应用磁场的晶体生长、生长轴的取向、增加底基和形状控制。本部分涉及材料从硅和Ⅲ-V族化合物到氧化物和氟化物的广泛内容。
Govindhan Dhanaraj is the Manager of Crystal Growth
Technologies at Advanced Renewable Energy Company (ARC Energy) at
Nashua, New Hampshire (USA) focusing on the growth of large size
sapphire crystals for LED lighting applications, characterization
and related crystal growth furnace development. He received his PhD
from the Indian Institute of Science, Bangalore and his Master of
Science from Anna University (India). Immediately after his
doctoral degree, Dr. Dhanaraj joined a National Laboratory,
presently known as Rajaramanna Center for Advanced Technology in
India, where he established an advanced Crystal Growth Laboratory
for the growth of optical and laser crystals. Prior to joining ARC
Energy, Dr. Dhanaraj served as a Research Professor at the
Department of Materials Science and Engineering, Stony Brook
University, NY, and also held a position of Research Assistant
Professor at Hampton University, VA. During his 25 years of focused
expertise in crystal growth research, he has developed optical,
laser and semiconductor bulk crystals and SiC epitaxial films using
solution, flux, Czochralski, Bridgeman, gel and vapor methods, and
characterized them using x-ray topography, synchrotron topography,
chemical etching and optical and atomic force microscopic
techniques. He co-organized a symposium on Industrial Crystal
Growth under the 17th American Conference on Crystal Growth and
Epitaxy in conjunction with the 14th US Biennial Workshop on
Organometallic Vapor Phase Epitaxy held at Lake Geneva, WIin 2009.
Dr. Dhanaraj has delivered invited lectures and also served as
session chairman in many crystal growth and materials science
meetings. He has published over 100 papers and his research
articles have attracted over 250 rich citations.
缩略语
PartB 熔体生长晶体技术
7.磷化铟:用稳定的磁场生长晶体及缺陷控制
7.1 历史综述
7.2 磁场下液体封盖生长法
7.3 熔体的磁场接触面
7.4 位错密度
7.5 磁流量对杂质隔离的影响
7.6 InP:Fe的光学特征
7.7 总结
参考文献
8.半导体直拉硅单晶和太阳能电池应用
8.1 激光扫描光散射技术生长硅单晶和太阳能电池应用
8.2 直拉硅单晶的晶体缺陷的控制
8.3 太阳能电池应用的多晶硅的生长和特征
8.4 总结
参考文献
9.氧化物光折变单晶的直拉生长法
9.1 背景
9.2 晶体生长
9.3 直拉生长系统的设计和发展
9.4 铌酸锂晶体的生长及其特性
9.5 其他氧化物光折变晶体
9.6 软铋矿晶体的生长及其特性
9.7 结论
参考文献
10.三元化合物Ⅲ-V族半导体体材料晶体生长
10.1 Ⅲ-V族三元化合物半导体
10.2 三元化合物衬底的需求
10.3 器件级三元化合物衬底标准
10.4 布里兹曼晶体生长技术介绍
10.5 Ⅲ-V族的二元化合物晶体生长技术综述
10.6 三元化合物相平衡
10.7 三元化合物半导体合金偏析
10.8 三元化合物晶体裂纹的形成
10.9 单晶三元化合物籽晶生产工艺
10.10 均质合金生长的溶质配备过程
10.11 熔体-固体界面形状的作用
10.12 结论
参考文献
11.用于红外线探测器的锑基窄禁带Ⅲ-V族半导体晶体的生长与特性
11.1 锑基半导体的重要性
11.2 相图
11.3 晶体结构和成键
11.4 材料合成和提纯
11.5 体材料InSb的生长
11.6 InSb、InAsxSbl-x.InBixSbl-x的结构特性
11.7 InSb、InAsxSb1_x.InBixSb1_x的物理性质
11.8 应用
11.9 结语与展望
参考文献
12.光学浮区技术用于氧化物晶体生长
12.1 历史
12.2 光学浮区技术——氧化物的应用
12.3 光学浮区及溶区移动晶体生长技术
12.4 浮区技术的优势和局限
12.5 光学浮区炉
12.6 OFZT的陶瓷和晶棒生长的实验细节
12.7 同成分和不同成分熔融氧化物的稳定生长
12.8 结构过冷和结晶前的稳定性
12.9 晶体生长的终止和冷却
12.10 0FZ技术的晶体生长特点
12.11 晶体缺陷测定——实验方法
12.12 0FZ和TSFZ方法选定氧化物单晶生长的具体条件
……
13.激光加热基座生长氧化物纤维
14.采用壳融技术合成高熔点材料
15.激光基质氟化物和氧化物品体生长
16.晶体生长的成型
参考文献